엔비디아, 환자 데이터 보호 AI ‘클라라 FL’ 공개
엔비디아, 환자 데이터 보호 AI ‘클라라 FL’ 공개
  • 박시현 기자
  • 승인 2019.12.02 17:54
  • 댓글 0
이 기사를 공유합니다

지능형 엣지 컴퓨팅 플랫폼으로 방사선학의 딥 러닝 간소화
엔비디아 클라라 FL은 여러 병원의 분산형 학습을 사용해 환자 데이터를 공유하지 않고도 강력한 AI 모델을 개발한다.
엔비디아 클라라 FL은 여러 병원의 분산형 학습을 사용해 환자 데이터를 공유하지 않고도 강력한 AI 모델을 개발한다.

[디지털경제뉴스 박시현 기자] 엔비디아는 현지시간 12월 1일부터 6일까지 미국 시카고에서 열리는 방사선 의료기기 전시회인 ‘북미방사선의학회 2019(Radiological Society of North America, 이하 RSNA)’에서 ‘엔비디아 클라라 연합학습(NVIDIA Clara Federated Learning, 이하 클라라 FL)’을 최초로 공개했다.

클라라 FL은 분산형 협력 학습(distributed, collaborative learning) 기술을 이용해 환자 데이터를 의료서비스 공급자가 내부적으로 보관할 수 있게 하는 시스템이다. 엔비디아 클라라 FL은 최근 출시된 엔비디아 EGX 지능형 엣지 컴퓨팅 플랫폼(NVIDIA EGX intelligent edge computing platform)에서 구동된다.

올해 RSNA에는 엔비디아 기술로 인공지능을 방사선 분야에 적용하기 위해 100여 명의 전시업체가 참석했다. 이는 의료업계에서 사용되는 AI 분야의 전환점이 될 전망이다.

AI의 엄청난 잠재력에도 불구하고, 의료업계는 환자들의 개인정보를 보호하는 동시에 AI 모델 학습에 필요한 방대한 양의 데이터에 접근해야 하는 문제에 직면해 있다. 엔비디아는 의료업계와 함께 해당 문제를 고민하면서 해결책을 찾고 있다.

클라라 FL은 환자의 개인정보를 보호하는 분산형 협력 AI 모델 학습용 레퍼런스 애플리케이션이다. 글로벌 시스템 제조업체를 통해 엔비디아 NGC-레디 포 엣지 서버(NGC Ready for Edge servers)에서 구동되는 분산형 클라이언트 시스템으로 로컬에서 딥 러닝 학습을 진행하고, 보다 정확한 글로벌 모델 학습을 위해 서로 협력할 수 있다.

클라라 FL 작동방식은 다음과 같다. 우선 클라라 FL이 헬름 차트(Helm chart)로 패키징된 후 쿠버네티스(Kubernetes) 인프라 상에서 간소화된 형태로 실행된다. 엔비디아 EGX 플랫폼은 연합 서버와 협업 클라이언트를 안전하게 프로비저닝해 애플리케이션 컨테이너와 초기 AI 모델 등 연합학습 프로젝트를 시작하기 위해 필요한 모든 것들을 제공한다.

클라라 FL을 사용하는 병원들은 3D 슬라이서(slicer), MITK, 포비아(Fovia), 필립스 인텔리스페이스 디스커버리(Philips Intellispace Discovery)와 같은 의료용 뷰어에 적용된 엔비디아 클라라 AI 지원 어노테이션 SDK(NVIDIA Clara AI-Assisted Annotation SDK)를 활용해 환자들의 데이터를 레이블링한다.

엔비디아 AI는 사전 학습된 모델과 전이 학습(transfer learning) 기법을 이용해 방사선 전문의의 레이블링 업무를 지원하고, 복잡한 3D 연구에 소요되는 시간을 몇 시간에서 몇 분까지 단축시킨다.

클라라 FL을 사용하는 모든 병원의 엔비디아 EGX 서버는 로컬 데이터에 글로벌 모델을 학습시킨다. 로컬 학습결과는 안전한 연결장치를 통해 연합학습 서버에 다시 공유된다. 이 접근방식은 연합 평균화(federated averaging)를 통해 새로운 글로벌 모델을 만들고, 환자 기록을 제외한 부분적인 모델 가중치를 공유하여 환자들의 개인정보를 보호한다.

이 과정은 AI 모델의 정확성이 원하는 수준까지 높아질 때까지 반복된다. 이와 같은 분산된 접근방식은 환자의 개인정보는 보호하면서 높은 성능을 갖춘 딥 러닝을 제공한다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.